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University, Raleigh, Norih Carolina 27695-8204 problem by employing microwave irraditidto facilitate the

formation of otherwise inaccessible ring structures and to
Receied May 4, 2007 greatly reduce the reaction times of solid-supported cyclo-

The formation of functionalized benzene rings via trimerizations from days to minutes. Moreover, by using
[2+2+2] cyclotrimerization reactions of a diyne and a mono- microwave irradiation, we can react substrates which previ-
alkyne enables a highly convergent synthesis of cyclic ously eluded cyclotrimerization. These developments lead
structures (Scheme 1), especially when compared to othert© unifying conditions for cyclotrimerization reactions of a
approaches of generating substituted aromatic ring systemsProad range of alkynes and provide excellent reaction
e.g., Friedel-Crafts reactions or directed lithiatiohSThe conditions for the assembly of combinatorial libraries with
versatility of the cyclotrimerization approach has inspired an aromatic core structure. While this initial study was not
the development of several specialized catalyst systems conducted in a parallel fashion, this methodology can easily
and led to numerous successful applications in total synthe-Pe automated to produce libraries of hundreds of compounds
sis* Although biologically important structures can be inonly a few days using commercially available automated
accessed and hundreds of diverse alkyne building blocks aremicrowave synthesizers.
commercially available, or can be efficiently synthesized, ~ The five diyne substratels-5 (Figure 1) used in this study
only very limited examples of [22+2] cyclotrimerization ~ have been prepared according to literature conditi®asd
reactions applied to combinatorial chemistry egistve the mono-alkyne reaction partners were either synthesized
hypothesize that this is due to several persisting problems(6)'* or purchased?-12, Sigma-Aldrich). Together, these
of this technology, including chemoselectivity, regioselec- Substrates allow for the probing of the functional group
tivity, and reactivity issues. The former leads to side products compatibility of the microwave-assisted2+2] cyclotri-
formed by di- and trimerization of diyne starting materials merization reaction. The reaction is compatible with a variety
(especially in the case of less reactive mono-alkyfeand  ©Of functionalities, inculding alkoxy groups (8), alkyl chains
the latter prevents the facile construction of highly substituted (in 7 and in12), aromatic rings (ir6, 10, and11), chlorine
aromatic rings or benzenes fused to a simple six-membered@toms (in8), cyano groups (ir8), and pyridyl groups (in
ring systen: 11). To investigate the reactivity enhancing effects through

By conducting [2-2-+2] cyclotrimerization reactions on microwave irradiation, we were especially interested in
a solid support, we were able to spatially separate the alkyneemploying the otherwise difficult to react diyn&s-5 and
precursors and thus provide a solution to the chemoselectivitythe less reactive internal alkyrie.

problem?8Here, we are reporting a solution to the reactivity ~ For initial investigations, we immobilized the precursor
1 on a standard polystyrene resin (H#D0 mesh, 2%

* Corresponding author. E-mail: alex_deiters@ncsu.edu. crosslinking) using a trityl linker (0.6 mmol/g, Scheme'2).
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Scheme 2. Microwave-Assisted [22+2] Cyclotrimerization
Reactions toward Indanes.

Reports

Scheme 3. Microwave-Assisted [22+2] Cyclotrimerization
Reactions toward Isoindolines.
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The immobilized substraté3 has previously been cyclo-

Reactions toward Tetrahydroisoquinolines.

trimerized by us using Wilkinson’s catalyst under thermal o cp RuCI(COD) OT“'[:@:
conditions (10 mol % Rh(RR)%CI, DCM, 60°C) requiring \_\\ MW (300 W), R
an extended reaction time of 48 h. However, when we ’30;;&;;)6”"" 32
conducted [22+2] cyclotrimerization reactions using the

Cp*RuCI(COD) catalyst (10 mol %) under microwave TFA HhC@:R

irradiation in a CEM Discover synthesizer (300 W, 1730 DCM -

toluene), we observe rapid transformation I8 into 14 3338

(within 10 min) and obtained the indan&s—21in excellent

yield (75-88%) and high purity ¥90%). The shortened Cmpd R R Vield  Regio.
reaction time and the higher yields represent a substantial 33 Bu H 87% 1:1
enhancement of the solid-supported-2+2] cyclotrimer- g‘; ﬁ:’;’;& : S?Oﬁ H
ization reaction and provide an excellent tool for the rapid - ChecEn 4 ol
assembly of small molecule arrays based on fused benzenes. 38 Et Et 78% 1:1

Moreover, it was not necessary to degas the solvent as in

the case of previous reactions, eventually facilitating the and 0.58 mmol/g, respectively) via a trityl linker. As
application of this methodology in automated synthesis. As expected, microwave-mediated cyclotrimerization reactions
in previous cases, spatial separation on the solid-supportof 22 to 23 proceeded rapidly and almost quantitatively

completely prevented formation of diyne dimers and trimers, (Scheme 3). The isoindolinegl—30 were isolated in 87

as observed in solution-phase reactions (especially with less96% yield and with>90% purity, after just a 10 min

reactive internal alkynes, R and R H).36 cyclotrimerization reactiofrrepresenting a substantial im-
To investigate the facile synthesis of isoindolines and, provement over previous reaction conditiérig.

more importantly, tetrahydroisoquinolines, we immobilized
the diynes2 and3 on a polystyrene resin &2 and31 (0.71

Although isoindolines are important pharmacophores
found in molecules with a wide range of biological activities,
especially antibacterial activit{$, we were most interested

2 HO — — — ok in assembling the homologous tetrahydroisoquinoline skel-
3 HN/ o/ eton due to its abundance in nature. Gratifyingly, the

HO— = Y= =y microwave-mediated cyclotrimerization d31 smoothly

1 2(n=1) 4(Y=H) proceeded to the immobilized tetrahydroisoquinoli®2

3(n=2) 5 (Y = CH0H) (Scheme 4), and after cleavage from the resin, the compounds

33—38 were obtained in good yields (#89%) as a 1:1
o) = CH,0Bn = gy = (CH,):Cl mixture of regioisomers. Thus, we achieved the facile
6 7 8 construction of this important core structure which is found
in a wide range of biologically important natural products
= (CHaCN - =—Ph (for example, in protoberine alkaloids, ipecacuanha alkaloids,

9 10

11 12

Figure 1. Diynes1—5 and mono-alkyne6—12used in this study.

and benzyltetrahydroisoquinoline alkaloid3) he transfor-
mation 31 to 32 showcases the enhancing effects of
microwave irradiation in conjunction with a solid-support
on the Ru-catalyzed [22+2] cyclotrimerization reaction.
When the same transformation was carried out in the solution
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Scheme 5. Microwave-Assisted [22+2] Cyclotrimerization
Reactions toward Phthalans.
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be obtained, which was previously not possible under
conventional thermal reaction conditions (data not shown).

In summary, we demonstrated the reactivity enhancing
effects of microwave irradiation combined with the effects
of spatial diyne separation on a polymeric support on the
ruthenium-catalyzed [22+2] cyclotrimerization reaction.
The conducted transformations were highly efficient and a
high level of chemoselectivity was observed. Moreover,
microwave-irradiation did not affect the regioselectivity of
the cyclotrimerization reaction when differentially substituted
diyne precursors were used. The developed methodology
provides rapid access to a variety of carbo- and heterocyclic
structures from simple starting materials. Moreover, it can
be directly employed in the synthesis of small molecule
arrays of pharmacologically relevant structures (e.g., iso-
indolines and tetrahydroisoquinolines), due to excellent
product yields, extremely short reaction times (minute time
scale), and simple reaction conditions (no solvent degassing
necessary). We believe that the demonstrated approach of
using microwave irradiation in conjunction with a solid
support can also find application in the optimization and
realization of other transition metal-catalyzed cycloaddition
reactions for combinatorial chemistry.
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sterically less demanding carboxy linkage for immobilization
on the polymeric suppoftin contrast, microwave irradiation
enables the application of a bulky, but readily cleavable, trityl
linker. The reactions 089 with the alkynes6—12 toward
41 proceeded smoothly (Scheme 5), delivering up to pen-
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